翻訳と辞書 |
Pickands–Balkema–de Haan theorem : ウィキペディア英語版 | Pickands–Balkema–de Haan theorem The Pickands–Balkema–de Haan theorem is often called the second theorem in extreme value theory. It gives the asymptotic tail distribution of a random variable ''X'', when the true distribution ''F'' of ''X'' is unknown. Unlike the first theorem (the Fisher–Tippett–Gnedenko theorem) in extreme value theory, the interest here is the values above a threshold. ==Conditional excess distribution function== If we consider an unknown distribution function of a random variable , we are interested in estimating the conditional distribution function of the variable above a certain threshold . This is the so-called conditional excess distribution function, defined as : for , where is either the finite or infinite right endpoint of the underlying distribution . The function describes the distribution of the excess value over a threshold , given that the threshold is exceeded.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pickands–Balkema–de Haan theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|